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Abstract—A generalized recursive algorithm valid for both
the £, and H, wave scattering of densely packed scatterers in
two dimensions is derived. This is unlike previously derived re-
cursive algorithms which have been found to be valid only for
E, polarized waves [1]-[7]. In this generalized recursive algo-
rithm, a scatterer is first divided into N subscatterers. The
n-subscatterer solution is then used to solve the (n + n')-sub-
scatterer solution. The computational complexity of such an al-
gorithm is found to be of O(N?) in two dimensions, and mean-
while, providing a solution valid for all angles of incidence. This
is better than the method of moments with Gaussian elimina-
tion which has an O(N?) complexity.

I. INTRODUCTION

ECURSIVE algorithms for calculating multiple scat-

tering of many scatterers have recently been devel-
oped [1]-[7]. The recursive algorithm calculates the scat-
tering solutions considerably faster than the conventional
method of moments with Gaussian elimination [6] be-
cause of the reduced computational complexity of the re-
cursive algorithm, which is of O(N 2) where N is the num-
ber of unknowns used to model the inhomogeneous
scatterer. Moreover, unlike the conjugate gradient method
[9]-[11], the recursive algorithm provides a full scatter-
ing solution valid for all angles of incidence.

In the aforementioned algorithm, an inhomogeneous
scatterer is first divided into N subscatterers. Then the so-
lution to the N subscatterer problem is sought recursively,
namely, the n-subscatterer solution is used to derive the
solution of (n + 1) subscatterers. In order to facilitate the
use of the addition theorem, the subscatterers are ordered
so that they are-at increasing distances from the origin
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Fig. 1. In the recursive algorithm, n-subscatterer solution is used to find
the (n + n')-subscatterer solution, where n’ is the number of subscatterers

equidistant from the origin. In this figure, n’ = 5.

Unfortunately, when the scatterers are tightly packed
together, some of the subscatterers are almost equidistant
from the origin [see Fig. 1], violating the use of the ad-
dition theorem. For an E, polarized wave when u is a
constant, this minor violation of the addition theorem is
not serious as the scattered field from each subscatterer is.
predominantly monopole. In two dimensions, the mono-
pole field is only logarithmically singular: a weak singu-
larity which does not pose a serious problem when the
addition theorem is violated. However, the previously de-
scribed algorithm [3]-[5] does not work when it is used
to calculate the scattering of an H, polarized wave by an
inhomogeneous cylinder modeled by a cluster of tightly
packed subscatterers. The reason is that the scattered field
from each subscatterer is predominantly dipolar, which is
more singular than a monopolar field. Hence, the infrac-
tion of the addition theorem is not tolerable in this case.

As a remedy, we present a generalization of the pre-
vious algorithms so that the infraction of the addition
theorem does not occur. In this generalized algorithm, n’
subscatterers, which are nearly equidistant from the ori-
gin, are added at once to the previous group of n sub-
scatterers at each recursion [8]. Hence, the n-subscat-
terer solution is used to find the (n + n')-subscatterer
solution. This generalized algorithm is found to work well
when it is used to construct scattering solutions of H, po-
larized waves from an inhomogeneous cylinder. As a
demonstration, we shall also use this algorithm to calcu-
late the scattering of an H, polarized wave from an array
of strips.

0018-9480/92%03.00 © 1992 IEEE
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II. THE GENERALIZED RECURSIVE ALGORITHM

Consider the case where an inhomogeneous scatterer is
divided into N subscatterers. To find a recursive solution,
one assumes that the n-subscatterer solution is known,
with the total field expressible as

¢(I‘) = (ngt(ko’ rO) -a+ W’(kOy r()) : :E(n) T a. (1)

In the above, y (ky, ry) is a column vector containing the
cylindrical harmonics in two dimensions and spherical
harmonics in three dimensions, and k; is the wavenumber

of the homogeneous medium in which the scatterer is re-
—~iwt

siding. In two dimensions, assuming e time depen-

dence, the mth element of y (ky, ry) is

[‘I’ (kOa rO)]m Hfrz)(k()pO)eideOv m = —L, T, L,
(1a)

where p, and ¢, are coordinates with respect to global
coordinates with origin O as shown in Fig. 1, and
Hﬁ,l)(x) is an m-order Hankel fucntion of the first kind.
“®g’’ stands for ‘‘regular part.”’ Hence

[(ng (k07 rO)]m = Jm(kopo)elm%, m= —L, - L,

(1b)

where J,, (x) is an m-order Bessel function.

The first term of (1) denotes the incident wave ex-
panded in terms of Bessel wave functions (or standing
waves), whose amplitudes are contained in the column
vector a. The second term of (1) denotes the scattered
wave functions off the n subscatterers [since (1a) repre-
sents outgoing wave functions], whose amplitudes are re-
lated to the amplitudes of the incident wave functions via
the aggregate T matrix T,. The parenthesized subscript n
denotes that this is defined for n subscatterers. In this def-
inition of the aggregate T matrix, the n subscatterers are
regarded as one aggregate scatterer yielding a scattered
field from the origin of a global coordinate system.

When n’ subscatterers are added to the previous n sub-
scatterer, resulting in n' + 1 scattering centers, the total
field can be written as

() = @glll'(ko, ro) -

+ Z ‘V(kOsr)

t1=n+

a+ y'(ky, ro) -

fn(n+n’) s a
z(n+n) BIO T a, (2)

with n' + 1 unknowns, i.e., T4 ay and Ty sy * Boos
fori=n+1, , n + n’. This is because the scattered
field from the originally aggregated n subscatterers will
be different due to multiple scattering: this new amplitude
is denoted by T+, * a. In addition, there are n’ new
scattering centers each of which has a scattered wave am-
plitude denoted by Tl(,ﬁ,,r) - Bo © a. Here, r, is the field
observation point with respect to the coordinates whose
origin is at the center of the ith subscatterer. Alterna-
tively, we can interpret T, + ) as the aggregate T matrix
for n subscatterers in the presence of n + n’ subscatterers,
and T,(n+,l/) is the (n + n')-scatterer T matrix for the ith
scatterer (for detailed definition of notations, see [1]-[6]).
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The aforementioned n’ + 1 unknowns could be found
as follows using the solution (1). First, we express the
field from the n’ subscatterers as incident field on the ag-
gregated n subscatterers. To this end, we use the trans-
lation formula to express the scattered field from the n’
subscatterers as standing waves about the global origin O,
so that

d () = Rey'(ko, 1) + @ + Rgy ' (ko, ro)
‘ n+n'
Z 601 ' Tz(n+n’) : ﬁzO ca
1=n+1
+ v (kO* rO) n(n+n) ©a. (3)

In the above, we have used the fact that [5, p. 464]

vk, 1) = Rgy'(ko, 1) - To,. \ro| < doiy  (32)

where d, is the distance between the origins of the ith
coordinates and the global coordinates. The translation
matrix @, contains elements given by

[EO.’ ]m‘n = H;]l m (kO dOI ) 4 T M)¢0” (3b)

where ¢y, is the angle the line dy, makes with the x, axis.

The first and second terms of (3) can now be considered
as the incident wave on the aggregate n subscatterers
whose scattered field is given by the third term. Compar-
ing (3) with (1), we notice that they have the same form,
except that now, the strength of the incident field is
changed. Hence from this comparison, we conclude that
the amplitude of the scattered field from the aggregate n
subscatterers must be just T, the aggregate T matrix for
n subscatterers, multiplied by the amplitude of the inci-
dent field, or

n+n'

fn(n+n’) = ‘f(n) ) <I + E a()i .

1=n+1

l(n +n') BIO> (4)

Next, we focus on the jth subscatterer of the group of
n' subscatterers and express the fields from all the other
subscatterers as incident fields on the jth subscatterer. By
so doing, we can rewrite (2) as

o(r) = Ry 'k, 1) * Bjo ~ @
+ (Rg\llt(k(), r]) ¢ ajo

n+n
2 @ * Ty n)Bio = @
i1=n+1
i+y
+ \I’t(k(b r]) . j(n+n) BJO s a, (5)
where the summation is fori = n + 1, ,n+n', for
i # j. In the above, we have used [5, p. 464]

?n(n +n'y " a

+ Ggy ' (ko, 1y) -

Ry ' (ky, ro) = Rgy'(ko, ;) - Bjos (5a)
\I’t(k()s rO) = (Rg\l’t(kos rj) : aj()v |rj| < djO (Sb)
y ko, ;) = Rgy'(ko, 1) * Wy, Ir| <d, (5¢)

which are the representation of the addition theorem in
matrix notation. The elements of @, and @, are similar to
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that of (3b), but the elements of B, are Bessel functions
instead.

Looking at (5), we note that the first three terms can be
regarded as incident field on the jth subscatterer, and the
last term is just the scattered field from the jth subscat-
terer. Therefore, the scattered field off the jth subscatterer
riust be related to the incident field via the isolated single-
scatterer T matrix for the jth subscatterer. Consequently,
we have

j(n+n) B/O - (1) BJO + ajO fn(n-%—n')
n+n'
+ 24—1 (1 . Ti(n+n’) . BiO s
1=n
1#)
j=n+1, ,h+n', (6)

where T, is the single-scatterer T matrix for the jth sub-
scatterer.

Equation (4) can be used to substitute for T, , ,y in (6)
to yield

Tt ) Bjo = (1) Bo + O * Ty
n+n
: <I + 2 @y Tigen - Bio>
t=n-+1
n+n'
+ 2 0 " Tivny - Bo |5
1=n+1
i#y
j=n+1, c,n+n. @)

The above could be rearranged to yield
l_)j ' Tj(n+n’) ' E]O

n+n

=T - | Bo+ 0o Ty + 2
1=n+1
I+]j
* (EJO : f(n) : i"“01 l) l(n+n ' l}iO ’
j=n+1, ,n+n', (8)
where D =[I - /(l) * @y * Ty - Og]. The above con-
stitutes n’ equations for the n’ unknowns T,(n+,, ) Bo- It
can be written more succinctly as
n+n'
Z A 1(n+n) BIO = j(l) [Bj() + o 0 ' T(n)]s
i=n+1
j=n+1-_ n+n, )
where
-D i =j,
e o
Ly " @ * T " Goi + Ty * @y 1§ # .

(9a)

After having solved (9) for T, , v, - Bio» (4) could be used
for find T, 4 ).
When all the unknowns in the n + n’ subscatterer prob-

lem are solved for, then we can use

‘l’t(kO’ rz) = \I'z(ko, rO) : EOI’ |l"0‘ > dOu (loa)
in Equation (2), and finally rewrite (2) as
o(r) = (ng’(ko, r) *a+ gk, ro) Tnen) @
(10b)

where T(, ., is the aggregate T matrix for n + n' sub-
scatterers defined as

n+n’'
T(n+n) - Tn(n+n ) + ‘= Z BO[ : z(n +n') BIO' (ll)
Equation (4) can be substituted into (11) to yield
n+an
?(n-%-n’) = f(n) + i Z+l (B01 + f(n) : 601) ' 1(n+n) BIO
I=n
(12)

Equations (9) and (12) permit us to find the (n + n’)-
subscatterer solution from the n-subscatterer solution.
These equations could be used recursively to find the N
subscatterer solution starting from a O subscatterer solu-
tion. When n’ = 1, (9) and (12) reduce to the previously
derived recursive algorithm [4], [5]. A backward recur-
sion formula can be derived so that fields internal to the
scatterer can be found [4], [7], [12].

III. CoMPUTATIONAL COMPLEXITY

In the forward recursive algorithm, an n’-subscatterer
problem is solved at each recursion so that n’ linear al-
gebraic equations are solved at each iteration as exempli-
fied by (9). If P harmonics are used to expand the incident
field in (1), and P harmonics are used to approximate the
scattered field from the aggregated n subscatterers, then,
Teyis a P X P matrix, and a is a P X 1 vector. In (2), if
M harmonics are used to approximate the scattered field
from the ith subscatterer, where i = n + 1 to n + n’,
then, T,(,,+,, \y * Biois an M X P matrix. In general, P har—
monics are needed to keep the translation formulas accu-
rate so that in (9), (9a), and (12), Ejo and @ are M X P,
while @; and ; are P X M. Consequently, (9) constitutes
solving a matrix equation with dimension Mn' X Mn'.
The inverse of this matrix equation by elimination tech-
niques (e.g., Gauss Jordan) will be of O(M>n’?) com-
plexity. Since there are P columns on the right hand side
of (9), the cost of solving (9) for P right-hand sides will
need an additional cost of O(M?*n'? P).

Since T(, is P X P where usually P >> M, the cost of
forming equation (9) is dominated by O(Mn’ P?) which is
the cost of forming T}, - @, - T, * @, in (10) and the
right-hand 51de of (9). The cost of evaluating (11) is also
of O(Mn' P?) (This analysis is similar to those presented
in [3]-[6]). Consequently, the CPU time at each recursive
step is given by
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t ~ C;(M*n") + C,(M*n'*P) + C;(Mn' P?) (13)

where Cy, C, and C; are numbers of the same order that
depend on implementations.
In two dimensions, if n’ is the number of scatterers in
the jth recursive step, then,
,
n' = = (2xR AD) (14)
L
where L is the total number of recursive steps required to
solve the scattering problem. (i.e., L is the number of
shell layers into which the scatterer is divided), R is the
maximum radius of the scatterer, A is the thickness of the

shell, and D is the density of the subscatterers per unit
cross-sectional area. Since R = L A, we have

n' = j2x A’D. (15)

Consequently, the first term in (13) is approximately

t; = C,(2m A*DY M. (16)

After stepping through L steps, the total contribution to
the CPU time from the first term is approximately'

L 2 3
C,2n A°D
ZU: 12 )

I
j=1 4
‘Since LA = R = +N/xD, we have L = vN/xD A”.

Substituting L into (17), we have

T, = M3LA. (17)

T, = 2C, = A°’DM*N?. (18)
Using (15), the second term in (13) is
ty = C;(2m A’DYM’j*P. (19)

In two dimensions, P = (x d,/2a) where d, is the diam-
eter of the object in the jth recursion and 2a is the diam-
eter of the subscatterers.” Approximately, 2a = v1/D
andd, = (j /L)(2R) where D and R is the density and the
radius of the scatterer respectively. Therefore,

P~ %ZWR\/B ~ pNE@D AD2, (20)
after using R = AL. Consequently,
ty = 8V Cy(r ADY/2M%j3. @1
After stepping through L steps, we have
L
T, = 2ty = G2 (x-A*Dy/* ML’
=1
= G2 (xr A*D)/*M*N?. 22)

A similar analysis shows that the contribution from the
last term in (13) is

'We have used the approximation ZF_, j* = L*/4.

*This follows from that for H. wave scattering, each subscatter is pre-
dominantly dipolar and hence singular. An error analysis on the cylindrical
harmonic expansion, which 1s a Fourier series expansion yields the above
result. Also, the truncation of a Fourier series expansion of a function which
1s singular gives rise to Gibbs phenomenon [13], but this can be mitigated
by windowing the Fourier series [13]. [14].
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T; = C32mMN* (23)

Therefore, the total CPU time in solving the problem is
approximately

T = 2C,M*1 A*D + Cy2x(x A*D)/*M?
+ C;27MIN>. (24)

If the shell thickness is such that = A% D is kept constant
and the number of harmonics M for each subscatterer is
constant,’ then the CPU time grows as N2, Note that the
first term in (24), which comes from Gaussian elimination
of (9), is proportional to M> A, Hence it easily domi-
nates the other terms if M> A? is not small. However, the
first two terms could be made small by making A small.*
On the other hand, making A small gives rise to Gibbs
phenomenon in the cylindrical harmonic expansion which
is a Fourier series expansion, but this can be mitigated by
windowing techniques [13], [14]. A similar analysis in

thr(;,e dimensions shows that the computer time grows as .
NT/35

IV. NUMERICAL SIMULATIONS

We have applied this generalized algorithm to derive
the scattering solution from an inhomogeneous cylinder.
The inhomogeneous cylinder is first divided into N square
subscatterers. The subscatterers are then replaced by cir-
cular subscatterers of the same cross-sectional area [15],
so that their isolated single-scatterer T matrix, Ty, is
readily obtained in closed form. As we shall show in the
ensuing numerical experiment, the replacement of square
subscatterers with circular subscatterers affects little the
scattering solution.

Fig. 2 shows the scattered field of a square dielectric
cylinder which is 0.9 free-space wavelengths square. The
illuminating plane wave is H, polarized. The scattering
solution is first sought with the extended boundary con-
dition (EBC) method [16]. Then the scatterer is replaced
with 81 square cylindrical subscatterers whose isolated
single-scatterer T matrix is also found with the EBC
method. The linear algebraic equations associated with
these 81 subscatterers are solved by a brute force method
similar to that in [17]. Then the subscatterers are replaced
with circular cylinders of the same cross-sectional area®
so that the isolated-scatterer T matrix is easily sought. In
this case, the circular cylinders are slightly overlapping.’
The circular cylinders could be made smaller by the use

*This is the case if each subscatterer is small and is predominantly di-
pole-like.

“The subscatterers are ordered by their centers. Hence when A is made
small enough, an overlapping chain of subscatterers does not occur.

>The computation complexities for three dimensions reported in [3] and
[4] are incorrect. In [3], it should be N®/?, and in [4], it should be N7/3.

SFirst used 1n [15], this is justified by the Maxwell-Garnett formula. The
equal area assumption causes the circular and the square cylinders to have
the same dipolar polarizability resulting in the same effective permuttivity.

"This does not violate the addition theorem as the wave from a single
subscatterer is coming out from the center of the subscatterer mathemati-
cally.
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Fig. 2. The scattering solution of a square cylindrical dielectric scatterer
of dimension 0.9 free-space wavelengths square illuminated by an H, po-
larized wave from the x axis at 300 MHz. The relative permittivity of the
cylinder is 2, and the field is computed at 10 free-space wavelengths from
the center of the scatterer. The square dots represent the solution calculated
with the extended boundary condition (EBC) method using 21 harmonics.
The diamonds represent the solution calculated with 81 square subscatter-
ers. The crosses represent the solution when the square subscatterers are
replaced with circular subscatterers of the same cross-sectional area. The
triangles are when the circular subscatterers are reduced in size with the
help of Maxwell-Garnett mixing formulas (see (25)) with a fractional cross-
sectional area of 80%. All subscatterers have three harmonics of scattered
field.

of the Maxwell-Garnett mixing formula [18] in two di-
mensions which is

|+ le—
fe + e

€, = g ——————, (25)
o le— e
f6€+60

where €, is the desired permittivity of the mixtuare, fis the
fractional cross-sectional area of the circular cylinders,
and e, is the permittivity of the circular cylinders that will
yield the desired mixture permittivity. The solution with
Maxwell-Garnett subscatterers has a fractional area of
80% which shrinks them enough so that they do not over-
lap. The solutions for all four methods are seen to be in
good agreement. The agreement could be attributed to the
fact that when the scattering properties of the subscatter-
ers are replaced by the isolated-scatterer T matrix, the
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08 — Analytic Solution

AMPLITUDE OF THE SCATTERED FIELD

T T T T -
0 100 200 300 400

ANGLE OF OBSERVATION

[}
-50 8 Method of Moments LM“AA[

+ Recursive Algorithm

HASE OF THE SCATTERED FIELD

-100 4 A QOld Recursive Algorithm
— Analytic Solution
150 4
-200 T T T T T T T
o] 100 200 300 400
ANGLE OF OBSERVATION

(b)

Fig. 3. Scattering of an H, polarized incident plane wave using the method
of moments, generalized recursive algorithm, the old recursive algorithm
of [4], and analytic solution. (a) Compares the amplitude while (b) com-
pares the phase. The frequency of the incident wave is 600 MHz. The
dielectric cylinder has a diameter of 0.4 m with a relative permittivity of
2. The incident plane wave is from the x axis. The field is measured at 1
meter from the center of the cylinder. The circular cylinder is modeled with
137 subscatterers. Each subscatterer has three harmonics of scattered field,
and 40 terms are used to keep the transiation formulas accurate.

subscatterers are behaving like points subscatterers.
Hence, the shape of the subscatterers is immaterial as long
as they have the same scattering strength.

Fig. 3 shows the H, scattering solution from a one
wavelength circular dielectric scatterer comparing the
method of moments (MOM) solution [15], [18], the an-
alytic solution and the generalized recursive algorithm and
the old recursive algorithm [4]. The old recursive algo-
rithm is seen to fail in this case. It is seen that the recur-
sive algorithm agrees better with the MOM solution than
with the closed-form solution. We trace the disagreement
with closed-form solution to modeling imperfections since
the circular scatterer is replaced with discrete subscatter-
ers. The outer boundary of the resultant scatterer is no
longer perfectly circular, but both the MOM solution and
the recursive algorithm solution are modeling this imper-
fectly circular scatterer, which is different from that mod-
eled by the analytic solution.

Fig. 4(a) shows the RCS of an inhomogeneous, circu-
lar, dielectric cylinder computed with the generalized re-
cursive algorithm and the method of moments for H,
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Fig. 4. (a) The RCS of an inhomogeneous dielectric cylinder computed
using the generalized recursive algorithm and the method of moments. The
frequency of the H, polarized incident wave is 100 MHz. The inhomoge-
neous dielectric cylinder has a diameter of 3 m with an inhomogeneous
dielectric distribution given by (26). The incident plane wave is from the
x axis. The cylinder is modeled with 121 subscatterers. Each subscatterer

has three harmonics of scattered field, and 70 terms are used to keep the .

translation formulas accurate. (b) Comparison of the CPU time versus the
number of unknowns (MN) in the problems. The white circles are for the
method of moments while the black circles are for the generalized recursive
algorithm.

waves. The inhomogeneity is described by the equation
1 + sin ¢
2

where a is the radius of the cylinder. For such an inhom-
ogeneous cylinder, the scattering solution does not have
a closed form. Hence, the method of moments is our only
basis for comparison. Excellent agreement is observed
between the generalized recursive algorithm and the
method of moments, because both the solutions are mod-
eled similarly.

Fig. 4(b) shows the growth of the CPU time on the
CRAY-2 vesus the number of unknowns (MN) in the
problem. Because of its reduced computational complex-
ity, the CPU time for the recursive algorithm (black cir-
cles) grows slower than that for the method of moments
(white circles). We expect this gap to widen as the num-
ber of unknowns gets large.® '

(26)

6 =1+ sin (o7 /a),

) 8The overhead associated with Bessel function computation is small in
this algorithm if they are calculated with recurrence relations as indicated
by a table in [6]. '

|
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(©
Fig. 5. Comparison of the RCS of an array of strips. computed using the
generalized recursive algorithm (solid circles), method of moments (solid

Jlines) and the recursive algorithm presented in [3] (dotted lines). The in-

cident wave makes an angle of 45 degrees with the x axis, and the plane
of incidence is the xz plane. (a) Cross-section view of the geometry drawn
to scale. (b) RCS for E_ polarized wave. (c) RCS for H_ polarized wave.

Fig. 5(a) illustrates the cross-sectional view of a two-
dimensional, perfectly conducting strip geometry. Fig.
5(b) and (c) show the normalized radar cross sections
(RCS’s) -of this geometry for E, and H, polarized waves,
respectively. On both graphs, we present three sets of
data:

1) The solid curves are the RCS’s computed using the
MOM.

2) The dashed curves are the RCS’s computed using
the recursive algorithm of [3], i.e., by adding the scatter-
ers one at a time. :
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3) The solid circles are the RCS’s computed using the
generalized recursive algorithm of this paper by adding
two strips at a time.

In both cases 2 and 3, each strip is treated as a sub-
scatterer whose T matrix is known. The agreement be-
tween the algorithm of this paper and the MOM is seen
to be excellent. On the other hand, when the strips-are
added to the geometry one by one using the algorithm of
[31, the addition theorems are violated, and the RCS can-
not be computed accurately. The T matrices for individual
strips are calculated using a method presented in [20].

V. CONCLUSION

A generalization of the recursive algorithm previously
described is reported here. This new recursive algorithm
avoids the violation of the addition theorem. This viola-
tion has caused previously reported algorithms not to work
well for H, polarized wave scattering. The generalized re-
cursive algorithm, however, remedies the problem of vi-
olating the addition theorem, and is demonstrated to work
for H, polarized wave scattering. Furthermore, it has a
reduced computational complexity of O(N?) compared to
MOM which has an OV ) complexity. Unlike the con-
jugate gradient method which furnishes a solution valid
for one incident wave only, this algorithm provides a so-
lution valid for all angles of incidence. Moreover, the ra-
diation condition at infinity is automatically satisfied by
such a solution.
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