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Abstract—A generalized recursive algorithm valid for both
the Ez and Hz wave scattering of densely packed scatterers in
two dimensions is derived. This is unlike previously derived re-
cursive algorithms which have been found to be valid only for

.!?, polarized waves [1]-[7]. In this generalized recursiye algo-

rithm, a scatterer is first divided into N subscatt erers. The

n-subscatterer solution is then used to solve the (n + n‘ )-sub-

scatterer solution. The computational complexity of such an al-

gorithm is found to be of O(N2 ) in two dimensions, and mean-
while, providing a solution valid for all angles of incidence. This
is better than the method of moments with Gaussian elimina-
tion which has an 0(N3 ) complexity.

1. INTRODUCTION

R ECURSIVE algorithms for calculating multiple scat-

tering of many scatterers have recently been devel-

oped [ 1]–[7]. The recursive algorithm calculates the scat-

tering solutions considerably faster than the conventional

method of moments with Gaussian elimination [6] be-

cause of the reduced computational complexity of the re-

cursive algorithm, which is of 0(N2 ) where N is the num-

ber of unknowns used to model the inhomogeneous

scatterer. Moreover, unlike the conjugate gradient method

[9]-[1 1], the recursive algorithm provides a full scatter-

ing solution valid for all angles of incidence.

In the aforementioned algorithm, an inhomogeneous

scatterer is first divided into N subscatterers. Then the so-

lution to the N subscatterer problem is sought recursively,

namely, the n-subscatterer solution is used to derive the

solution of (n + 1) subscatterers. In order to facilitate the

use of the addition theorem, the subscatterers are ordered

so that they are at increasing distances from the origin

[3]-[5].
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Fig. 1. In the recursive algorithm, n-subscatterer solution is used to find

the (n + n’ )-subscatterer solution, where n’ is the number of subscatterers
equidistant from the origin. In this figure, n’ = 5.

Unfortunately, when the scatterers are tightly packed

together, some of the subscatterers are almost equidistant

from the origin [see Fig. 1], violating the use of the ad-

dition theorem, For an E, polarized wave when ,u is a

constant, this minor violation of the addition theorem is

not serious as the scattered field from each subscatterer is

predominantly monopole. In two dimensions, the mono-

pole field is only logarithmically singular: a weak singu-

larity which does not pose a serious problem when the

addition theorem is violated. However, the previously de-

scribed algorithm [3]–[5] does not work when it is used

to calculate the scattering of an Hz polarized wave by an

inhomogeneous cylinder modeled by a cluster of tightly

packed subscatterers. The reason is that the scattered field

from each subscatterer is predominantly dipolar, which is

more singular than a monopolar field. Hence, the infrac-

tion of the addition theorem is not tolerable in this case.

As a remedy, we present a generalization of the pre-

vious algorithms so that the infraction of the addition

theorem does not occur. In this generalized algorithm, n’

subscatterers, which are nearly equidistant from the ori-

gin, are added at once to the previous group of n sub-

scatterers at each recursion [8]. Hence, the n-subscat-

terer solution is used to find the (n + n‘ )-subscatterer

solution. This generalized algorithm is found to work well

when it is used to construct scattering solutions of Hz po-

larized waves from an inhomogeneous cylinder. As a

demonstration, we shall also use this algorithm to calcu-

late the scattering of an Hz polarized wave from an array

of strips.
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II. THE GENERALIZED RECURSIVE ALGORITHM

Consider the case where an inhomogeneous scatterer is

divided into N subscatterers. To find a recursive solution,

one assumes that the n-subscatterer solution is known,

with the total field expressible as

c)(r) = (Rgyfr(ko, ro) “ a + y’(ko, rO) “ 7(,,) “ a. (1)

In the above, v (kO, rO) is a column vector containing the

cylindrical harmonics in two dimensions and spherical

harmonics in three dimensions, and kO is the wavenumber

of the homogeneous medium in which the scatterer is re-

siding. In two dimensions, assuming e “Uf time depen-

dence, the rnth element of v (kO, r.) is

‘i)(kpo)e ,[IVVCO,rO)1,. = ~,,, im$o m= —L, ”””, L,

(la)

where PO and @o are coordinates with respect to global

coordinates with origin O as shown in Fig. 1, and

H:) (x) is an m-order Hankel fucntion of the first kind.

“@g” stands for “regular part. ” Hence

[(llg~ (ko, r.)],. = J,,, (koPo ) e “’’o’, m=–~... , L,

(lb)

where J,. (x) is an m-order Bessel function.

The first term of (1) denotes the incident wave ex-

panded in terms of Bessel wave functions (or standing

waves), whose amplitudes are contained in the column

vector a. The second term of (1) denotes the scattered

wave functions off the n subscatterers [since (1a)’ repre-

sents outgoing wave functions], whose amplitudes are re-

lated to the amplitudes of the incident wave functions via

the aggregate T matrix 7(.). The parenthesized subscript n

denotes that this is defined for n subscatterers. In this def-

inition of the aggregate T matrix, the n subscatterers are

regarded as one aggregate scatterer yielding a scattered

field from the origin of a global coordinate system.

When n’ subscatterers are added to the previous n sub-

scatterer, resulting in n‘ + 1 scattering centers, the total

field can be written as

with n’ + 1 unknowns, i.e., ~~(~+~,) and T,(,, +~, ) “ Fto>
fori=n+ l,””” , n + n‘. This is because the scattered

field from the originally aggregated n subscatterers will

be different due to multiple scattering: this new amplitude

is denoted by 7.(. + ,,1~ “ a. In addition, there are n’ new

scattering centers each of which has a scattered wave am-
plitude denoted by ~1(~+ ~.~ . ~,. . a. Here, r, is the field

observation point with respect to the coordinates whose

origin is at the center of the ith subscatterer. Alterna-

tively, we can interpret Tn(,,+ n ) as the aggregate T matrix

for n subscatterers in the presence of n + n’ subscatterers,
and ~1(~+ ,,,~ is the (n + n’ )-scatterer T matrix for the ith

scatterer (for detailed definition of notations, see [1]-[6]).

The aforementioned n‘ + 1 unknowns could be found

as follows using the solution (1). First, we express the

field from the n‘ subscatterers as incident field on the ag-

gregated n subscatterers. To this end, we use the trans-

lation formula to express the scattered field from the n‘

subscatterers as standing waves about the global origin 0,

so that

@(r) = (Rgty ’@o,ro) “ a + dlg~f(ko, ro)

In the above, we have used the fact that [5, p. 464]

~’(ko,ri) ‘: (Rgl#’(ko,ro) “ iio,, Iro I < ‘Oi, (qa)

where do, is the distance between the origins of the ith

coordinates and the global coordinates. The translation

matrix ilol contains elements given by

[~o, L,, = HL’1,.(ko dot) e “(”- ‘)40’, (3b)

where $., is the angle the line do, makes with the X. axis.

The first ancl second terms of (3) can now be considered

as the incident wave on the aggregate n subscatterers

whose scattered field is given by the third term. Compar-

ing (3) with (1), we notice that they have the same form,

except that now, the strength of the incident field is

changed, Hence from this comparison, we conclude that

the amplitude of the scattered field from tlhe aggregate n

subscatterers must be just 7(,,), the aggregate T matrix for

n subscatterers, multiplied by the amplitude of the inci-

dent field, or

(
n +11’

‘n(n + n’) = ?(,n) “

)

1 + Z ~oi “ Ti(~+~) “ ~io . (4)
1=?1+1

Next, we folcus on the jth subscatterer of the group of

n’ subscatterem and express the fields from all the other

subscatterers a~sincident fields on the jth subscatterer. By

so doing, we can rewrite (2) as

+ (Rg~f(ko,~) “ Ftjo “ Tn(n+,,f) “ a

n+n’

~ ~ji “ ‘i(. +,*)Fio ~ a+ Oi,fpp’(ko, r]) - ,=n+l

i #J

+ Y/r(lCo, rj) “ Tj(~+~f) “ ~jo “ a, (5)

where the summation is for i = n + 1, . “ “ , n + n’, for

i # j. In the above, we have used [5, p. 464]

6tg~ ‘(ko, ro) = @gw ‘(~o, rj) - Fjo, (5a)

which are the representation of the addition theorem in

matrix notation. The elements of tilo and ilJ1 are similar to
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that of (3 b), but the elements of ~10 are Bessel functions

instead.

Looking at (5), we note that the first three terms can be

regarded as incident field on the jth subscatterer, and the

last term is just the scattered field from the jth subscat-

terer. Therefore, the scattered field off the jth subscatterer

r.mst be related to the incident field via the isolated single-

scatterer T matrix for the jth subscatterer. Consequently,

we have

j=n+l, -.. >n +,’, (6)

where ~J(l~ is the single-scatterer T matrix for the jth sub-

scatterer.
Equation (4) can be used to substitute for T.(. +,, ~in (6)

to yield

j=rz+l, ”””, n+ n’. (7)

The above could be rearranged to yield

‘j “ ‘J(,, + ?7’) “ iJ,o

L i *j

1

“ (qo “ ?(n) “ illjt + q,) “ ‘f(n+ n’) “ FiO ,

j=n+l, ”””>n+ n’, J (8)

where DJ = [~ – ~J(l) - tijo “ ~(~) “ ~oj]. The above con-—
stitutes n’ equations for the n‘ unknowns T{(~+,1,) s ~,o. It

can be written more succinctly as

n+n’

j=n+l, ”””, n+ n’, (9)

where

(9a)

After having solved (9) for ~,(. + ,,,~ . ~,o, (4) could be used

for find 7,1(.+.,).

When all the unknowns in then + n’ subscatterer prob-

lem are solved for, then we can use

V’(ko, r,) = v’(~o, ~o) “ To,> Irol > do,, (lOa)

in Equation (2), and finally rewrite (2) as

o(r) = @tgV’(ko, ro) . a + ~’(ko, ro) “ 7(.+. ) ~ a

(lOb)

where T(n+ ~,~ is the aggregate T matrix for n + n‘ sub-

scatterers defined as

ni-n’

‘(n + n’) = T,t(,, +n, ) + i=?+, ~o, “ T’l(n+,z, ) “ p,o. (11)

Equation (4) can be substituted into (11) to yield

n +n’

– T(n) + i =;+, (BO, + 7(,,) ‘ tto, ) “ T,(. + ,, ) o B,o.‘(n+n’) —

(12)

Equations (9) and (12) permit us to find the (n + n’)-

subscatterer solution from the n-subscatterer solution.

These equations could be used recursively to find the N

subscatterer solution starting from a O subscatterer solu-

tion. When n‘ = 1, (9) and (12) reduce to the previously

derived recursive algorithm [4], [5]. A backward recur-

sion formula can be derived so that fields internal to the

scatterer can be found [4], [7], [12].

III. COMPUTATIONAL COMPLEXITY

In the forward recursive algorithm, an n’-subscatterer

problem is solved at each recursion so that n‘ linear al-

gebraic equations are solved at each iteration as exempli-

fied by (9). If P harmonics are used to expand the incident

field in (1), and P harmonics are used to approximate the

scattered field from the aggregated n subscatterers, then,

7(.) is a P X P matrix, and a is a P x 1 vector. In (2), if

A4 harmonics are used to approximate the scattered field

from the ith subscatterer, where z’ = n + 1 to n + n’,

then, ~i(n +. ~ o ~io is an M X P matrix. In general, P har-
monics are needed to keep the translation formulas accu-

rate so that in (9), (9a), and (12), ~jo and fijo are M X P,

while tioi and ~oi are P X M. Consequently, (9) constitutes

solving a matrix equation with dimension A4n’ x A4n’.

The inverse of this matrix equation by elimination tech-

niques (e. g., Gauss Jordan) will be of 0(M3 n’3 ) com-

plexity. Since there are P columns on the right hand side

of (9), the cost of solving (9) for P right-hand sides will

need an additional cost of 0(M2 n‘2 P).

Since ?(.) is P x P where usually P >> M, the cost of

forming equation (9) is dominated by O(Mn’ P2 ) which is

the cost of forming ~1(1) “ ti10 . 7(,,J “ tiOl in (10) and the

right-hand side of (9). The cost of evaluating (11) is also

of O(Mn’ P 2) (This analysis is similar to those presented

in [3]–[6]). Consequently, the CPU time at each recursive

step is given by
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t- c~(M3n’3) +c~(M2n’2P) +c3(M’z’P2) (13)

where Cl, C2 and C3 are numbers of the same order that

depend on implementations.

In two dimensions, if n’ is the number of scatterers in

the jth recursive step, then,

n’ = ; (27rR AD) (14)

where L is the total number of recursive steps required to

solve the scattering problem. (i. e,, L is the number of

shell layers into which the scatterer is divided), R is the

maximum radius of the scatterer, A is the thickness of the

shell, and D is the density of the sub scatterers per unit

cross. sectional area. Since R = L A, we have

n’ = j2x A2D. (15)

Consequently, the first term in (13) is approximately

tlj ~ Cl (271_A2D)3i143j3. (16)

After stepping through L steps, the total contribution to

the CPU time from the first term is approximately 1

L

T = j~l fIj =
Cl (27r A 2D)3 ~3Lb

4
(17)

Since LA= Rz-, wehave L =-.

Substituting L into (17), we have

Tl = 2C1X A2DMBNT. (18)

Using (15), the second term in (13) is

t2j z C2 (2T A2D)2Mzj2P. (19)

In two dimensions, P = (T dJ/2a) where d] is the diam-

eter of the object in the jth recursion and 2a is the diam-

eter of the sub scatterers. 2 Approximately, 2a = ~

and dj = (j /L)(2R) where D and R is the density and the

radius of the scatterer respectively. Therefore,

P = ~21rR& = j2&(xD AZ)lll, (20)

after using R = AL. Consequently,

t2j z 8&C2(Z A2D)5/2M2j3. (21)

After stepping through L steps, we have

Tz = 5 t2j = C226(T-AZD)5[2MZL4j=l

—— C22&(7r A2D)1/2M2N2. (22)

A similar analysis shows that the contribution from the

last term in (13) is

‘We have used the approximation Z,L. , j~ = L4/4.

‘This follows from that for H: wave scattering, each subscatter is pre-
dominantly dlpolar and hence singular. An error analysis on the cyhndrical
harmomc expansion, which m a Fourier series expansion ytelds the above
result. Also, the truncation of a Fourier series expansion of a function which
M singular gives rise to Gibbs phenomenon [13], but this can be mitigated
by windowing the Fourier series [13], [14].

719

TJ = C327rMN2 (23)

Therefore, the total CPU time in solving the problem is

approximately

T = [2C,lkf37r A*D + C22&7r AzD)f/zMz

+ c327rM]N2. (24)

If the shell thickness is such that x A 2D is kept constant

and the number of harmonics M for each subscatterer is

constant,3 then the CPU time grows as N*. Note that the

first term in (24), which comes from Gaussian elimination

of (9), is proportional to M3 A 2. Hence it easily domi-

nates the other terms if M3 A 2 is not small. However, the

first two terms could be made small by making A small.4

On the other hand, making A small gives rise to Gibbs

phenomenon Ln the cylindrical harmonic expansion which

is a Fourier series expansion, but this can be mitigated by

windowing techniques [13], [14]. A similar analysis in

three dimensions shows that the computer time
N7/3.5

IV. NUMERICAL SIMULATIONS

We have applied this generalized algorithm

the scattering solution from an inhomogeneous

grows as

to derive

cylinder.

The inhomogeneous cylinder is first divided into N square

subscatterers. The subscatterers are then replaced by cir-

cular subscatterers of the same cross-sectional area [15],

so that their isolated single-scatterer T matrix, Ti(I), k

readily obtained in closed form. As we shall show in the

ensuing numerical experiment, the replacement of square

subscatterers with circular subscatterers affects little the

scattering solution.

Fig. 2 shows the scattered field of a square dielectric

cylinder which is 0.9 free-space wavelengths square. The

illuminating plane wave is Hz polarized. The scattering

solution is first sought with the extended boundary con-

dition (EBC) method [16]. Then the scatterer is replaced

with 81 square cylindrical subscatterers whose isolated

single-scatterer T matrix is also found with the EBC

method. The linear algebraic equations associated with

these 81 subscatterers are solved by a brute force method

similar to that in [17]. Then the subscatterers are replaced

with circular cylinders of the same cross-sectional areac

so that the isolated-scatterer T matrix is easily sought. In

this case, the circular cylinders are slightly overlapping.7

The circular cylinders could be made smaller by the use

‘This is the case if each subscatterer is small and is predominantly di-

pole-like.

4The subscatterers are ordered by their centers. Hence when A is made

small enough, an overlapping chain of subscatterers does not occur.
‘The computation complexities for three dimensions reported in [3] and

[4] are incorrect. !hr [3], it should be Ns/3, and in [4], it should be N7’3.

6First used m [15], this is justified by the Maxwell-Garnett formula. The
equal area assumption causes the cmcular and the square cylinders to have
the same dipolar polarizability resulting in the same effective permlttivity.

‘This does not violate the addition theorem as the wave from a single
subscatterer is coming out from the center of the subscatterer mathemati-
cally.
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Fig. 2. The scattering solution of a square cylindrical dielectric scatterer
of dimension 0.9 free-space wavelengths square illuminated by an Hz po-

larized wave from the .x axis at 300 MHz. The relative permittivity of the
cylinder is 2, and the field is computed at 10 free-space wavelengths from
the center of the scatterer. The square dots represent the solution calculated
with the extended boundary condition (EBC) method using 21 harmonics.
The diamonds represent the solution calculated with 81 square subscatter-

ers. The crosses represent the solution when the square sub scatterers are

replaced with circular subscatterers of the same cross-sectional area. The
triangles are when the circular subscatterers are reduced in size with the
help of Maxwell-Gamett mixing formulas (see (25)) with a fmctional cross-

sectional area of 80%. All subscatterers have three harmonics of scattered
field.

of the Maxwell–Garnett mixing formula [18] in two di-

mensions which is

where Ceis the desired permittivity of the mixture, f is the

fractional cross-sectional area of the circular cylinders,

and e, is the permittivity of the circular cylinders that will

yield the desired mixture permittivity. The solution with

Maxwell-Garnett subscatterers has a fractional area of

80% which shrinks them enough so that they do not over-

lap. The solutions for all four methods are seen to be in

good agreement. The agreement could be attributed to the

fact that when the scattering properties of the subscatter-

ers are replaced by the isolated-scatterer T matrix, the

Q 1,1
J
2 1,0 z?% ❑ MathotiofMmnents

/A!\
+ RecursiveAlgorlthm
a Old RecursmeAlgorlthm
— AnalytmSolutlon

o 100 200 300 ,
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+
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~-loo
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~-150
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4

ANGLE OF OBSERVATION

(b)

J

o

Fig. 3. Scattering of an Hz polarized incident plane wave using the method
of moments, generalized recursive algorithm, the old recursive algorithm
of [4], and analytic solution. (a) Compares the amplitude while (b) com-
pares the phase. The frequency of the incident wave is 600 MHz. The
dielectric cylinder has a diameter of 0.4 m with a relative permittivity of
2. The incident plane wave is from the x axis. The field is measured at 1

meter from the center of the cylinder. The circular cylinder is modeled with

137 subscatterers. Each subscatterer has three harmonics of scattered field,

and 40 terms are used to keep the translation formulas accurate.

subscatterers are behaving like points subscatterers.

Hence, the shape of the subscatterers is immaterial as long

as they have the same scattering strength.

Fig. 3 shows the Hz scattering solution from a one

wavelength circular dielectric scatterer comparing the

method of moments (MOM) solution [15], [18], the an-

alytic solution and the generalized recursive algorithm and

the old recursive algorithm [4]. The old recursive algo-

rithm is seen to fail in this case. It is seen that the recur-

sive algorithm agrees better with the MOM solution than

with the closed-form solution. We trace the disagreement

with closed-fomn solution to modeling imperfections since
the circular scatterer is replaced with discrete subscatter-

ers. The outer boundary of the resultant scatterer is no

longer perfectly circular, but both the MOM solution and

the recursive algorithm solution are modeling this imper-

fectly circular scatterer, which is different from that mod-

eled by the analytic solution.

Fig. 4(a) shows the RCS of an inhomogeneous, circu-

lar, dielectric cylinder computed with the generalized re-

cursive algorithm and the method of moments for Hz
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Fig. 4. (a) The RCS of an inhomogeneous dielectric cylinder computed

using thegeneralized recursive algorithm andthemethod of moments. The

frequency of the fl,polarize dincidentwaveis 100 MHz. Theinhomoge-
neous dielectric cylinder has a diameter of 3 m with an inhomogeneous

dielectric distribution given by (26). The incident plane wave is from the

.x axis. The cylinders modeled with 121 subscatterers. Each subscatterer
has three harmonics of scattered field, and70 terms are used to keep the
translation formulas accurate. (b) Comparison of the CPU time versus the
number of unknowns (MN) in the problems. The white circles are for the
method of moments while the black circles are for the generalized recursive
algorithm.

waves. The inhomogeneity is described by the equation

I+ sin@
Er=l+

2
sin ( fnr/a), (26)

where a is the radius of the cylinder. For such an inhom-

ogeneous cylinder, the scattering solution does not have

a closed form. Hence, the method of moments is our only

basis for comparison. Excellent agreement is observed

between the generalized recursive algorithm and the

method of moments, because both the solutions are mod-

eled similarly.

Fig. 4(b) shows the growth of the CPU time on the

CRAY-2 vesus the number of unknowns (MN) in the

problem. Because of its reduced computational complex-

ity, the CPU time for the recursive algorithm (black cir-

cles) grows slower than that for the method of moments
(white circles). We expect this gap to widen as the num-

ber of unknowns gets large. 8

‘The overhead associated with Bessel function computation is small in
this algorithm if they are calculated with recurrence relations as indicated
by a table in [6].

I
kz

4 I

2 F’”

1.A 1-1oA...-

1s0”

21

270”

/- ., Y
k “1 o“

(c)

Fig. 5. Comparison of the RCS of an array of strips computed using the

generalized recursive algorithm (solid circles), method of moments (solid
lines) and the recursive algorithm presented in [3] (dotted lines). The in-

cident wave makes an angle of 45 degrees with the x axis, and the plane
of incidence is the xz plane. (a) Cross-section view of the geometry drawn
to scale. (b) RCS for E, polarized wave. (c) RCS for H. polarized wave.

Fig. 5(a) illustrates the cross-sectional view of a two-

dimensional, perfectly conducting strip geometry. Fig.

5(b) and (c) show the normalized radar cross sections

(RCS’S) of this geometty for E, and Hz polarized waves,

respectively. on both graphs, we present three sets of

data:

1) The solid curves are the RCS’s computed using the

MOM.

2) The dashed curves are the RCS’S computed using

the recursive algorithm of [3], i.e., by adding the scatter-

ers one at a time.
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3) Thesolid circles arethe RCS’scomputed using the

generalized recursive algorithm of this paper by adding

two strips at a time.

In both cases 2 and 3, each strip is treated as a sub-

scatterer whose T matrix is known. The agreement be-

tween the algorithm of this paper and the MOM is seen

to be excellent, On the other hand, when the strips are

added to the geometry one by one using the algorithm of
[3], the addition theorems are violated, and the RCS can-

not be computed accurately. The T matrices for individual

strips are calculated using a method presented in [20].

V. CONCLUSION

A generalization of the recursive algorithm previously

described is reported here. This new recursive algorithm

avoids the violation of the addition theorem. This viola-

tion has caused previously reported algorithms not to work

well for Hz polarized wave scattering. The generalized re-

cursive algorithm, however, remedies the problem of vi-

olating the addition theorem, and is demonstrated to work

for HZ polarized wave scattering. Furthermore, it has a

reduced computational complexity of 0(N2 ) compared to

MOM which has an 0(N3 ) complexity. Unlike the con-

jugate gradient method which furnishes a solution valid

for one incident wave only, this algorithm provides a so-

lution valid for all angles of incidence. Moreover, the ra-

diation condition at infinity is automatically satisfied by

such a solution.
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